久久久99精品成人片,人人妻人人澡人人爽欧美一区双,国内精品久久久久久久97牛牛,97久人人做人人妻人人玩精品,久久久久久久精品无码AV少妇,91九色在线播放,国产精品久久久久久影视不卡

安全高效的蛋白結(jié)晶條件篩選試劑盒

想要獲得高質(zhì)量蛋白晶體一般需要克3個(gè)難題1、獲得純度高的,均一的蛋白樣品;2,篩選可結(jié)晶的條件;3,優(yōu)化結(jié)晶條件,最后獲得高質(zhì)量的單晶;其中,篩選可結(jié)晶的條件是獲得蛋白質(zhì)晶體的主要瓶頸之一;

 

    Jena Biosource品牌中有一系列蛋白結(jié)晶研究所要用的試劑和耗材,以下給大家介紹一下Jena里面暢銷的蛋白結(jié)晶條件篩選試劑盒。

 

1、JBScreen Basic

JBScreen Basic是基于稀疏矩陣法的蛋白結(jié)晶試劑盒,包含了96種篩選條件,整套試劑盒分為4個(gè)小規(guī)格,每個(gè)小規(guī)格包含24種條件,24個(gè)條件分別密封在螺旋蓋試管中,每管10ml,可以隨時(shí)使用。Jena里面的蛋白結(jié)晶篩選試劑盒不包含二甲砷酸鹽,用MES進(jìn)行替代。

二甲砷酸鹽,含砷,是有毒物質(zhì)

1、      致癌物質(zhì);

2、      吸入后對(duì)人體有害,刺激眼睛和皮膚,長(zhǎng)時(shí)間接觸,可導(dǎo)致腎臟和肝臟受損;

3、      能與自由巰基反應(yīng),可以與半胱氨酸硫共價(jià)結(jié)合,所以存在蛋白構(gòu)象受到嚴(yán)重影響的風(fēng)險(xiǎn);


名稱

貨號(hào)

規(guī)格

JBScreen Basic 1

CS-121

24 solutions (10 ml each)

JBScreen Basic 2

CS-122

24 solutions (10 ml each)

JBScreen Basic 3

CS-123

24 solutions (10 ml each)

JBScreen Basic 4

CS-124

24 solutions (10 ml each)

JBScreen Basic 1 – 4

CS-125

4 Kits

JBScreen Basic HTS

CS-203L

96 solutions (1.7 ml each)


2、 JBScreen Classic

      這個(gè)系列是Jena品牌中最初推出的經(jīng)典的結(jié)晶條件試劑盒,在文獻(xiàn)中的應(yīng)用以每年30%的速度增長(zhǎng);這個(gè)試劑盒包含了240個(gè)篩選條件,涵蓋了各種有效沉淀劑和Buffer。整套試劑盒分成了10小規(guī)格,每個(gè)規(guī)格包含了24個(gè)條件,如果只想要其中某些條件,是可以單獨(dú)購(gòu)買小規(guī)格試劑盒的;


名稱

貨號(hào)

條件數(shù)量

JBScreen Classic 1 (PEG 400 to 3000 based)

CS-101L

24 solutions (10 ml each)

JBScreen Classic 2 (PEG 4000 based)

CS-102L

24 solutions (10 ml each)

JBScreen Classic 3 (PEG 4000+ based)

CS-103L

24 solutions (10 ml each)

JBScreen Classic 4 (PEG 5000 MME to 8000 based)

CS-104L

24 solutions (10 ml each)

JBScreen Classic 5 (PEG 8000 to 20000 based)

CS-105L

24 solutions (10 ml each)

JBScreen Classic 6 (Ammonium Sulfate based)

CS-106L

24 solutions (10 ml each)

JBScreen Classic 7 (MPD based)

CS-107L

24 solutions (10 ml each)

JBScreen Classic 8 (MPD/Alcohol based)

CS-108L

24 solutions (10 ml each)

JBScreen Classic 9 (Alcohol/Salt based)

CS-109L

24 solutions (10 ml each)

JBScreen Classic 10 (Salt based)

CS-110L

24 solutions (10 ml each)

 

JBScreen Classic 1–10

CS-114L

10 Kits

JBScreen Classic HTS I (PEG based)

CS-201L

96 solutions (1.7 ml each)

JBScreen Classic HTS II (Ammonium Sulfate, MPD, Alcohol and Salt based)

CS-202L

96 solutions (1.7 ml each)


 

 

         3、JBScreen pentaerythritol

 

      基于兩種新奇的沉淀劑,季戊四醇丙氧基化物和季戊四醇乙基化物,用于生物大分子最初結(jié)晶條件的篩選。兩者都包含一個(gè)季戊四醇的支鏈型高分子。因此他們不同于傳統(tǒng)的沉淀劑(如MPD和PEG)。另外,季戊四醇聚合物具有冷凍保護(hù)劑的功能,蛋白晶體在這些高濃度的沉淀劑中生長(zhǎng),并能夠由晶滴直接冷凍;

    

名稱

貨號(hào)

規(guī)格

JBScreen Pentaerythritol 1 (PEP 426 based)

CS-191

24 solutions (10 ml each)

JBScreen Pentaerythritol 2 (PEP 629 based)

CS-192

24 solutions (10 ml each)

JBScreen Pentaerythritol 3 (PEE 270 based)

CS-193

24 solutions (10 ml each)

JBScreen Pentaerythritol 4 (PEE 797 based)

CS-194

24 solutions (10 ml each)

JBScreen Pentaerythritol 1 – 4

CS-195

4 Kits

JBScreen Pentaerythritol HTS

CS-210L

96 solutions (1.7 ml each)


     參考文獻(xiàn):

  • Sheu-Gruttadauria et al. (2019) Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2. The EMBO Journal e101153.
  • Pozzi et al. (2019) Evidence of Destabilization of the Human Thymidylate Synthase (hTS) Dimeric Structure Induced by the Interface Mutation Q62R. Biomolecules DOI:10.3390/biom9040134.
  • Deka et al. (2018) Structural and biochemical studies on the role of active site Thr166 and Asp236 in the catalytic function of D-Serine deaminase from Salmonella typhimurium. Biochem. Biophys. Res. Commun. 504:40.
  • Dall et al. (2018) Structural and functional analysis of cystatin E reveals enzymologically relevant dimer and amyloid fibril states. J. Biol. Chem. 293:13151.
  • Rinaldi et al. (2018) Crystallization and initial X-ray diffraction analysis of the multi-domain Brucella blue light-activated histidine kinase LOV-HK in its illuminated state. Biochem. Biophys. Rep. 16:39.
  • Flores-Ibarra et al. (2018) Crystallization of a human galectin-3 variant with two ordered segments in the shortened N-terminal tail. Sci. Rep. 8:9835.
  • Bernedo-Navarro et al. (2018) Structural Basis for the Specific Neutralization of Stx2a with a Camelid Single Domain Antibody Fragment. Toxins 10:108.
  • Zeng et al. (2017) Structural basis of host recognition and biofilm formation by Salmonella Saf pili. eLife DOI:10.7554/eLife.28619.
  • Oiki et al. (2017) Alternative substrate-bound conformation of bacterial solute-binding protein involved in the import of mammalian host glycosaminoglycans. Sci. Rep. 7:17005.
  • Jansson et al. (2017) The interleukin-like epithelial-mesenchymal transition inducer ILEI exhibits a non-interleukin-like fold and is active as a domain-swapped dimer. J. Biol. Chem. 292:15501.
  • McPhail et al. (2017) The Molecular Basis of Aichi Virus 3A Protein Activation of Phosphatidylinositol 4 Kinase IIIβ, PI4KB, through ACBD3. Structure 25:121.
  • Songsiriritthigul et al. (2017) Crystal structure of the N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori. Acta Cryst F 73:62.
  • Yokoyama et al. (2017) Large-scale crystallization and neutron crystallographic analysis of HSP70 in complex with ADP. Acta Cryst F 73:555.
  • Corvaglia et al. (2019) Carboxylate-functionalized foldamer inhibitors of HIV-1 integrase and Topoisomerase 1: artificialanalogues of DNA mimic proteins. Nucleic Acids Research DOI:10.1093/nar/gkz352.
  • Deka et al. (2017) Comparative structural and enzymatic studies on Salmonella typhimurium diaminopropionate ammonia lyase reveal its unique features. J. Struct. Biol. DOI:10.1016/j.jsb.2017.12.012.
  • Moonens et al. (2015) Structural insight in the inhibition of adherence of F4 fimbriae producing enterotoxigenic Escherichia coli by llama single domain antibodies. Veterinary Research 46:14.
  • Zano et al. (2014) Structure of an unusual S-adenosylmethionine synthetase from Campylobacter jejuni. Acta Cryst. D 70:442.
  • Goyal et al. (2013) Crystallization and preliminary X-ray crystallographic analysis of the curli transporter CsgG. Acta Cryst. F69:1349.
  • Fujita et al. (2017) Structural Flexibility of an Inhibitor Overcomes Drug Resistance Mutations in Staphylococcus aureus FtsZ. ACS Chem. Biol. 12:1947.
  • Weidenweber et al. (2017) Structure of the acetophenone carboxylase core complex: prototype of a new class of ATP-dependent carboxylases/hydrolases. Sci. Rep. 7:39674.
  • Fujita et al. (2017) Identification of the key interactions in structural transition pathway of FtsZ from Staphylococcus aureus. J. Struct. Biol. 198:65.
  • Wagner et al. (2016) The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Science 354:114.
  • Demmer et al. (2015) Insights into Flavin-based Electron Bifurcation via the NADH-dependent Reduced Ferredoxin:NADP Oxidoreductase Structure. JBC 290:21985.
  • Rekittke et al. (2015) Structure of the GcpE-HMBPP complex from Thermus thermophilius. Biochem. Biophys. Res. Commun.458:246.
  • Uchida et al. (2014) Structure and properties of the C-terminal β-helical domain of VgrG protein from Escherichia coli O157. J. Biochem. 155(3):173.
  • McDougall et al. (2019) Proteinaceous Nano container Encapsulate Polycyclic Aromatic Hydrocarbons. Sci. Rep. 9:1058.
  • De Wijn et al. (2018) Combining crystallogenesis methods to produce diffraction-quality crystals of a psychrophilic tRNA-maturation enzyme. Acta Cryst F 74:747.
  • Kumar et al. (2018) Novel insights into the degradation of β-1,3-glucans by the cellulosome of Clostridium thermocellum revealed by structure and function studies of a family 81 glycoside hydrolase. Int. J. Biol. Macromol. 117:890.
  • Leal et al. (2018) Crystal structure of DlyL, a mannose-specific lectin from Dioclea lasiophylla Mart. Ex Benth seeds that display cytotoxic effects against C6 glioma cells. Int. J. Biol. Macromol. 114:64.
  • Sousa Cavada et al. (2018) Canavalia bonariensis lectin: Molecular bases of glycoconjugates interaction and antiglioma potential. Int. J. Biol. Macromolec. 106:369.
  • Ernst et al. (2018) A comparative structural analysis of the surface properties of asco-laccases. PLOS ONEDOI:10.1371/journal.pone.0206589.
  • Kumar et al. (2017) Non-classical transpeptidases yield insight into new antibacterials. Nat. Chem. Biol. 13:54.
  • Nascimento et al. (2017) Structural analysis of Dioclea lasiocarpa lectin: A C6 cells apoptosis-inducing protein. Int. J. Biochem. Cell Biol. 92:79.
  • Cattani et al. (2015) Structure of a PEGylated protein reveals a highly porous double-helical assembly. Nat. Chem. 7:823.
  • Boltsis et al. (2014) Non-contact Current Transfer Induces the Formation and Improves the X?ray Diffraction Quality of Protein Crystals. Crystal Growth & Design 14:4347.
  • Kampatsikas et al. (2017) In crystallo activity tests with latent apple tyrosinase and two mutants reveal the importance of the mutated sites for polyphenol oxidase activity. Acta Cryst. F 73:491.
  • Kolek et al. (2016) A novel microseeding method for the crystallization of membrane proteins in lipidic cubic phase. Acta Cryst. F 72:307.
  • Tan et al. (2014) A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa. Acta Cryst. D 70:2054.
  • Li et al. (2014) Crystallizing Membrane Proteins in the Lipidic Mesophase. Experience with Human Prostaglandin E2 Synthase 1 and an Evolving Strategy. Crystal Growth & Design 14:2034.
  • Jacobs et al. (2012) Expression, purification and crystallization of the outer membrane lipoprotein GumB from Xanthomonas campestris. Acta Cryst. F 68:1255.
  • Li et al.(2011) Crystallizing Membrane Proteins in Lipidic Mesophases. A Host Lipid Screen. Crystal Growth & Design 11(2):530.
  • Shaw Stewart et al. (2011) Random Microseeding: A Theoretical and Practical Exploration of Seed Stability and Seeding Techniques for Successful Protein Crystallization. Crystal Growth & Design 11(8):3432.
  • Caffrey et al. (2009) Crystallizing Membrane Proteins Using Lipidic Mesophases. Nat Protoc. 4:706.
  • Cherezov et al. (2006) In Meso Structure of the Cobalamin Transporter, BtuB, at 1.95 ? Resolution. J. Mol. Biol. 364:716.

 

  

 

在線客服

我們的營(yíng)業(yè)時(shí)間: 8:30-17:30

油尖旺区| 枣强县| 麻江县| 桦甸市| 阿瓦提县| 东兴市| 闽侯县| 孟连| 中方县| 新巴尔虎右旗| 荣昌县| 南涧| 盐山县| 普兰店市| 信阳市| 泰顺县| 罗山县| 嘉禾县| 德安县| 陵川县| 禄丰县| 奉节县| 汕头市| 明溪县| 射阳县| 家居| 临夏市| 富源县| 蚌埠市| 志丹县| 大竹县| 北京市| 大城县| 尼勒克县| 天台县| 兴山县| 集安市| 滨海县| 蕲春县| 茂名市| 昌黎县|